If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35y^2+9y-2=0
a = 35; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·35·(-2)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-19}{2*35}=\frac{-28}{70} =-2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+19}{2*35}=\frac{10}{70} =1/7 $
| 1x/5=12 | | 9x^2-16=33 | | 5x+9-2x=9 | | 3+8-4x2-12=2 | | -15=4m+9 | | -8=-2(5x+6) | | -15=4m+8 | | 40+1/3x=45 | | 5.9=9.9-0.8x | | -8=-2(5x=6) | | -6r=21 | | -35-2x=-40-7x | | 7(w+5)=4w+47 | | -6(2n-9)=-7(-4n+3) | | 3(2x+7)=-16+25 | | 8-2a=2a-3(a+5) | | 10x+7=-3-10x | | 3,4m+1,8m-6=15 | | 50+.50x=25+3x | | 5-(x+1)=1+(1+x) | | 5-(x-1)=1+(1+x) | | 4h2–12h+9=0 | | 2v-34=8(v-8) | | 5(x+1)+2=-4(x-9)-4 | | 5/6x-5=1 | | x/120=87/100 | | 36=3+11d | | -2n-10=6n-58 | | 6c+14=-5c+4+19 | | -2x^2=80 | | 2y+5=5y+10 | | 4|4x−3|−8=−4 |